
Announcements Static Assurance Phantom Types FIN

Software System Design and Implementation

Lecture 8: Static Analysis, Phantom Types

Zoltan A. Kocsis
University of New South Wales

Term 2 2022

1

Announcements Static Assurance Phantom Types FIN

Announcements

Assignment 2 Due: 02 Aug 2022

A milestone: so far, only technical difficulties with marking,
beyond our control.

But today: I made a mistake with marking Exercise 4.

2

Announcements Static Assurance Phantom Types FIN

My Ex04 mistake

Some of you (I know about 3 people) lost a mark on Exercise 4
Part 2, with the following:

*** Failed! (after 1 test):

Exception:

Test.hs:(93,1)-(98,44): Non-exhaustive patterns in

function equals

Null

Null

Those of you who implemented any ”null folding” in your smart
constructors, e.g.

node Null Null = Null

lost a mark because of this.

3

Announcements Static Assurance Phantom Types FIN

Your Ex04 mistake

You complained about this on the forums, and – unfortunately for
me – I thought I made a mistake in the marking scripts.
This morning, when I looked at the spec:

Ex04 spec

Then, define two smart constructors, which behave exactly like
their counterparts Leaf and Node, but automatically calculate
the NodeInfo values so as to maintain the invariants.

I realized that I didn’t. Those who implemented ”null folding” had
wrong solutions, and should have lost this mark fair and square.

4

Announcements Static Assurance Phantom Types FIN

My Ex04 mistake

Unfortunately for me – but fortunately for you, I already changed
the marking scripts by the time I realized this, and instructed
James to mark the exercise again. This was my mistake.
Since I don’t want to force James to re-mark the exercise yet
again, I will accept the null-folding solution, and those of you who
implemented it will find that they have an extra mark compared to
yesterday’s results, even though their solution was wrong.

5

Announcements Static Assurance Phantom Types FIN

Methods of Assurance

Static DynamicHybrid

Testing

assert()

Monitors, watchdogs

Types

Proofs

Static Analysers

Model Checkers

Contracts

Gradual Types

Static means of assurance analyse a program without running it.

6

Announcements Static Assurance Phantom Types FIN

Static vs. Dynamic

Static checks can be exhaustive.

Exhaustivity

An exhaustive check is a check that is able to analyse all possible
executions of a program.

However, some properties cannot be checked statically in
general (halting problem), or are intractable to feasibly check
statically (state space explosion).

Dynamic checks cannot be exhaustive, but can be used to
check some properties where static methods are unsuitable.

7

Announcements Static Assurance Phantom Types FIN

Compiler Integration

Most static and all dynamic methods of assurance are not
integrated into the compilation process.

You can compile and run your program even if it fails tests.

You can change your program to diverge from your model
checker model.

Your proofs can diverge from your implementation.

Types

Because types are integrated into the compiler, they cannot
diverge from the source code. This means that type signatures are
a kind of machine-checked documentation for your code.

8

Announcements Static Assurance Phantom Types FIN

Static Checks are Possible

Theorem (H. G. Rice)

All non-trivial properties of partial computable functions N → N
are undecidable. A property is non-trivial if it is neither true for
every partial computable function, nor false for every partial
computable function.

When you have a property of a program, it may be:

semantic: one about the function computed by the program
(does the program terminate for all inputs, does it return 2 for
any input, etc.)

syntactic: e.g. does the program contain an if-then-else
statement etc.

Syntactic properties may be decidable; by Rice’s theorem semantic
ones aren’t. But syntactic properties can imply semantic ones (no
loops, no recursive calls implies terminating).

9

Announcements Static Assurance Phantom Types FIN

Types

Types are the most widely used kind of formal verification in
programming today.

They are checked automatically by the compiler.

They can be extended to encompass properties and proof
systems with very high expressivity (covered next week).

They are an exhaustive analysis.

In the next two week, we’ll look at techniques to encode various
correctness conditions inside Haskell’s type system.

10

Announcements Static Assurance Phantom Types FIN

Phantom Types

We’ll start with Phantom Types.

11

Announcements Static Assurance Phantom Types FIN

Units of Measure

In 1999, badly written software confusing units of measure (U.S.
Customary unit of force Pounds and SI/Metric unit of force
Newtons) caused the Mars Climate Orbiter to burn up on
atmospheric entry.

Demo 1: Units of Measure

12

Announcements Static Assurance Phantom Types FIN

Phantom Types

Definition

A phantom type is a data type that has a type parameter which
does not occur in the type of any argument to any of its
constructor.

Examples:

data DoubleUnit u = DoubleUnit Double

data NestedList r a = NestedList [[a]]

Non-examples:

data Maybe a = Nothing | Just a

data NamedMaybe e = NM String (Maybe e)

Borderline but non-example:

data StringWith r = Nil | Cons Char (StringWith r)

13

Announcements Static Assurance Phantom Types FIN

Phantom Types: Uses

Use cases:

We can use this parameter to track what data invariants have
been established about a value.

We can use this parameter to track information about the
representation (e.g. units of measure).

There are some non-use-cases where regular old data types
are preferable: the ”database IDs” example you see all over
the Internet is one such.

Demo 2: Student IDs

14

Announcements Static Assurance Phantom Types FIN

Datatype Promotion

data UG

data PG

data StudentID x = ZID Int

Defining empty data types for our tags is untyped. We can have
StudentID UG, but also StudentID String.

Recall

Haskell types themselves have types, called kinds. Can we make
the kind of our tag types more precise than *?

The DataKinds language extension lets us use data types as kinds:

{-# LANGUAGE DataKinds, KindSignatures #-}

data Stream = UG | PG

data StudentID (x :: Stream) = SID Int

-- rest as before

15

Announcements Static Assurance Phantom Types FIN

Making Illegal States Unrepresentable

Demo 3: Using Phantom Types (File IO, Read Write mode)
Demo 4: Type Golf (Soccer Plays)

16

Announcements Static Assurance Phantom Types FIN

FIN

1 Thanks!

2 The quiz is due 23:59 Thursday, 27 July 2022.

3 The exercise is due 09:10 Thursday, 27 June 2022.

4 The assignment is due 23:59 Tuesday 02 Aug 2022.

17

	Announcements
	

	Static Assurance
	

	Phantom Types
	

	FIN
	

